Solve each problem. Write the answer as a mixed number fraction (if possible).

Answers

1) An old road was $2 \frac{3}{4}$ miles long. After a renovation it was $1 \frac{1}{2}$ times as long. How long was the road after the renovation?
2) Lana needed a piece of string to be exactly $1 / \frac{4}{5}$ feet long. If the string she has is $1 \frac{1}{2}$ times as long as it should be, how long is the string?
3) A baby frog weighed $3 \frac{1}{2}$ ounces. After a month it was $2 \frac{1}{2}$ times as heavy, how much did the frog weigh after a month?
4) A single box of thumb tacks weighed $3 / 4$ ounces. If a teacher had $1 / 2$ boxes, how much would their combined weight be?
5) A bag of strawberry candy takes $3 / 5$ ounces of strawberries to make. If you have $3 \frac{1}{3}$ bags, how many ounces of strawberries did it take to make them?
6) A bottle of home-made cleaning solution took $1 \frac{1}{2}$ milliliters of lemon juice. If Nancy wanted to make $1 / \frac{1}{4}$ bottles, how many milliliters of lemon juice would she need?
7) A new washing machine used $2 \frac{1}{3}$ gallons of water per full load to clean clothes. If Oliver washed $3 \frac{1}{3}$ loads of clothes, how many gallons of water would be used?
8) A bottle of sugar syrup soda had $2 \frac{1}{2}$ grams of sugar in it. If Dave drank 1 full bottles and $3 / 4$ of a bottle, how many grams of sugar did he drink?
9) A doctor told his patient to drink 3 full cups and $2 / 4$ of a cup of medicine over a week. If each full cup was $2 \frac{2}{3}$ pints, how much is he going to drink over the week?
10) A package of paper weighs $1 \frac{2}{3}$ ounces. If Roger put $3 / 2$ packages of paper on a scale, how much would they weigh?
11) Maria had 3 full cement blocks and one that was $1 / 2$ the normal size. If each full block weighed $3 / 3$ pounds, what is the weight of the blocks Maria has?
12) Haley can read $1 \frac{1}{4}$ pages of a book in a minute. If she read for $2 / 4$ minutes, how much would she have read?

Solve each problem. Write the answer as a mixed number fraction (if possible).

1) An old road was $2 \frac{3}{4}$ miles long. After a renovation it was $1 / 2$ times as long. How long was the road after the renovation?
2) Lana needed a piece of string to be exactly $1 \frac{4}{5}$ feet long. If the string she has is $1 \frac{1}{2}$ times as long as it should be, how long is the string?
3) A baby frog weighed $3 \frac{1}{2}$ ounces. After a month it was $2 \frac{1}{2}$ times as heavy, how much did the frog weigh after a month?
4) A single box of thumb tacks weighed $3 / 4$ ounces. If a teacher had $1 / 2$ boxes, how much would their combined weight be?
5) A bag of strawberry candy takes $3 / 5$ ounces of strawberries to make. If you have $3 \frac{1}{3}$ bags, how many ounces of strawberries did it take to make them?
6) A bottle of home-made cleaning solution took $1 \frac{1}{2}$ milliliters of lemon juice. If Nancy wanted to make $1 \frac{1}{4}$ bottles, how many milliliters of lemon juice would she need?
7) A new washing machine used $2 \frac{1}{3}$ gallons of water per full load to clean clothes. If Oliver washed $3 \frac{1}{3}$ loads of clothes, how many gallons of water would be used?
8) A bottle of sugar syrup soda had $2 \frac{1}{2}$ grams of sugar in it. If Dave drank 1 full bottles and $3 / 4$ of a bottle, how many grams of sugar did he drink?
9) A doctor told his patient to drink 3 full cups and $2 / 4$ of a cup of medicine over a week. If each full cup was $2 \frac{2}{3}$ pints, how much is he going to drink over the week?
10) A package of paper weighs $1 \frac{2}{3}$ ounces. If Roger put $3 / 2$ packages of paper on a scale, how much would they weigh?
11) Maria had 3 full cement blocks and one that was $1 / 2$ the normal size. If each full block weighed $3 / 3$ pounds, what is the weight of the blocks Maria has?
12) Haley can read $1 / 4$ pages of a book in a minute. If she read for $2 \frac{1}{4}$ minutes, how much would she have read?

Answers
1.
2.
\qquad
3. $\frac{\mathbf{8}^{3} / 4}{5^{5} / 4}$ 4. $_{\frac{12^{0} / 15}{2}}^{\text {5. }}$
6. \qquad
7.
7%
s. \qquad
9.
10. \qquad
11.

12. \qquad
$33^{2} / 16$

Solve each problem. Write the answer as a mixed number fraction (if possible).

Answers

$7^{7} / 9$	$12^{0} / 15$	$8^{3} / 4$	$2^{7} / 10$	$5^{5} / 8$
5%	$4^{3} / 8$	$9^{4} / 12$	$1^{7} / 8$	$4 \frac{1}{8}$

1) An old road was $2 \frac{3}{4}$ miles long. After a renovation it was $1 \frac{1}{2}$ times as long. How long was the road after the renovation?
2) Lana needed a piece of string to be exactly $1 / \frac{4}{5}$ feet long. If the string she has is $1 \frac{1}{2}$ times as long as it should be, how long is the string?
3) A baby frog weighed $3 \frac{1}{2}$ ounces. After a month it was $2 \frac{1}{2}$ times as heavy, how much did the frog weigh after a month?
4) A single box of thumb tacks weighed $3 \frac{3}{4}$ ounces. If a teacher had $1 / 2$ boxes, how much would their combined weight be?
5) A bag of strawberry candy takes $3 / 5$ ounces of strawberries to make. If you have $3 / 3$ bags, how many ounces of strawberries did it take to make them?
6) A bottle of home-made cleaning solution took $1 \frac{1}{2}$ milliliters of lemon juice. If Nancy wanted to make $1 \frac{1}{4}$ bottles, how many milliliters of lemon juice would she need?
7) A new washing machine used $2 \frac{1}{3}$ gallons of water per full load to clean clothes. If Oliver washed $3 \frac{1}{3}$ loads of clothes, how many gallons of water would be used?
8) A bottle of sugar syrup soda had $2 \frac{1}{2}$ grams of sugar in it. If Dave drank 1 full bottles and $3 / 4$ of a bottle, how many grams of sugar did he drink?
9) A doctor told his patient to drink 3 full cups and $2 / 4$ of a cup of medicine over a week. If each full cup was $2 \frac{2}{3}$ pints, how much is he going to drink over the week?
10) A package of paper weighs $1 \frac{2}{3}$ ounces. If Roger put $3 \frac{1}{2}$ packages of paper on a scale, how much would they weigh?
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
